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Abstract
An iterative scheme for the approximative solution of the Galerkin system
of the linear rotational diffusion equation for the chromophore distribution
in nonlinear optical polymers is formulated. Uniformly valid asymptotic
steady-state solutions are obtained in terms of power series expansions in the
normalized dc field and the convergence properties of the scheme are discussed.
Moreover, by neglecting the effect of the ac field, it is proved by means of
the Galerkin-system approach that the equilibrium solution of the rotational
diffusion equation acts as a global attractor for any initial distributions. In
addition, the decay towards this distribution is a purely exponential decay for
small and moderate values of the dc-field strength. When the dc-field strength
exceeds a certain threshold, this relaxation process is characterized as a damped
oscillation.

PACS numbers: 78.20Jq, 02.30.Jr, 42.70Jk

1. Introduction

The field of electro-optic (EO) properties of liquids and solids has received increasing attention
over the last couple of years due to the interest in nonlinear optical polymers. Several attempts
have been made in order to model the EO response of such polymers [1–6]. We refer to these
papers for more details concerning the physical implications and limitations of the different
modelling approaches.

In [5] and [6] a simple but physically intuitive model of chromophore reorientation in
a viscous polymer matrix is presented. Both static (dc) and time-dependent (ac) situations
are considered. This model represents an extension of the rotational diffusion equation for
the chromophore distribution introduced by Michelotti and Tousseare [4] and Wu [3], who
theoretically studied the long-term relaxation behaviour of the induced EO coefficient in terms
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of orientational Brownian motion with and without the application of an external electric
field [7]. The fundamental assumption underlying this model is that the torque exerted by the
polymer matrix can be represented by a microscopic ‘molecular’ electric field, with a randomly
varying orientation throughout the polymer volume. The magnitude of this field is assumed to
be temperature dependent but spatially constant. The macroscopic properties of the polymer
are obtained by averaging over the fluctuating direction of the field. The results obtained in [6]
are shown to compare fairly well with experiments.

Hence, according to [5] and [6], the chromophore distribution denoted by f is governed
by the evolution equation

τrot
∂f

∂t
= ∇2f + ∇ · (f∇U) (1)

where the effect of the polymer matrix and applied field is taken care of by a general time- and
space-dependent potential energy U (normalized by the thermal energy kT )

U = −�µ · ( �E0 + �EM)/kT .

Here �µ is the dipole moment, �E0 the time-independent applied field and �EM the molecular
field. In addition, τrot is the rotational diffusion time and ∇ = θ̂ ∂

∂θ
+ 1

sin(θ) ϕ̂
∂
∂ϕ

denotes the
angular part of the gradient operator. Note that the inertial effects have been neglected in this
description. Solutions of the partial differential equation (1) are not easily obtained due to the
coupling between the three variables: θ, ϕ and t . One approach relies on so-called continued
matrix fractions [8, 9]. When the angles θ and ϕ are coupled and U is of the order O(1), this
method is not well suited, however. In view of this situation we have considered the following
less demanding physical problem: rather than treat the full two-angle problem, we focus on the
co-linear case in order to gain some insight into the properties of the full problem. Co-linear
fields result whenever the molecular field is either parallel or anti-parallel to the applied field.
Hence, only these two relative orientations are considered. Subsequently, approximate values
of physical quantities such as angular order parameters are calculated by averaging over these
two cases. Though this is clearly a crude approximation to the general case it nevertheless
retains the essence of the physical problem. Hence, the present model can be viewed as a toy
model designed to illustrate the mathematical properties of the full problem. The consequence
of having two co-linear fields is that the ϕ-dependence of the problem is eliminated. Hence
the rotational diffusion equation for the averaged chromophore distribution f reads

τrot
∂f

∂t
= 1

sin(θ)

∂

∂θ

[
sin(θ)

{
∂f

∂θ
+

∂U

∂θ
f

}]
. (2)

We now assume that the potential energy U decomposes into a sum of a time-dependent
molecular dc field with normalized amplitude ε and an applied ac field with amplitude εα

oscillating in time with a fixed frequency ω:

U = −ε cos(θ) − εα exp[−iωt] − εα∗ exp[iωt]. (3)

Here ε = |ε| and ε = −|ε| account for the parallel and anti-parallel molecular fields,
respectively, and α the amplitude of the ac field measured in units of the dc-field amplitude.
In [6], approximate solutions of the system equations (2) and (3) are obtained by means of
the Galerkin approximation with respect to the Legendre basis {Pn(cos θ)}∞n=1, and Fourier-
series expansion in terms of the Galerkin coefficients. One ends up with an algebraic system
of equations. The latter system is truncated both with respect to the Legendre basis and the
number of Fourier components. The convergence properties of the solution, however, are not
discussed.

This serves as the background and motivation for the present work. The main focus
in the present paper is the mathematical aspects of the Galerkin system for the rotational
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diffusion equation introduced in [6]. In the first part of the paper we analyse the set of
differential equations which constitutes the truncated Galerkin system obtained from the
rotational diffusion equations (2) and (3). An algorithm for solving this equation iteratively
is presented. It is proved that the steady-state part of the solution obtained by means of
this iteration scheme converges uniformly to the steady-state part of the exact solution of the
truncated Galerkin system. The second part of the paper is devoted to an analysis of the
Galerkin system in the absence of any ac effects. In this case the Galerkin system simplifies to
a linear, inhomogeneous system of ordinary differential equations with constant coefficients.
The equilibrium of this system is identified with the Boltzmann distribution, i.e., the equilibrium
solution

feq(θ) = f0 exp[ε cos θ ] (4)

of the rotational diffusion equation. It is proved by using the theory of positive stable
matrices [10] that the equilibrium of the Galerkin system is asymptotically stable, and hence
that the Boltzmann distribution as expected acts as a global attractor for any initial distribution.
In addition, it is shown that the equilibrium is an asymptotically stable node for low-dc-field
strengths, while it becomes a stable focus when increasing the dc-field strengths above a certain
threshold. The location of the eigenvalues of the coefficient matrix can be detected by means
of Geršgorin’s theorems [11].

This paper can be viewed as a theoretical complement to the paper [6]. In addition, the
techniques employed are of interest in their own right. We conjecture that the iteration scheme
for the truncated Galerkin system introduced in this paper can easily be adopted to models
involving initial value problems of partial differential or integro-differential equations, where
it is not possible or practical to obtain the solutions in closed form.

The paper is organized as follows. In section 2 the iteration scheme for solving the
truncated Galerkin system is presented in the parameter regime |ε| < 1, and its convergence
properties are studied. In section 3 the asymptotic stability of the Boltzmann distribution in
the dc case is discussed. The final section contains some concluding remarks. In appendix A
the iteration scheme introduced in section 2 is shown to be applicable to the complementary
regime |ε| � 1, while appendix B contains the proof of the positive stability of the coefficient
matrix in the dc case, as well as the location of the eigenvalues of this matrix as inferred from
Geršgorin’s theorems.

2. Iterative method for the truncated Galerkin system of the rotational diffusion
equation

The starting point of the analysis is the non-dimensional version of the rotational diffusion
equation (2)

∂f (θ, t)

∂t
= 1

sin(θ)

∂

∂θ

{
sin(θ)

[
∂f (θ, t)

∂θ
+

∂U(θ, t)

∂θ
f (θ, t)

]}
(5)

where

U(θ, t) ≡ −ε(1 + α exp[−iωt] + α∗ exp[iωt]) cos(θ) (6)

which is derived from (2) by performing the scalings t → t/τrot and ω → τrotω.
We expand the solution of the rotational diffusion equation in terms of a Fourier–Legendre

series, i.e.

f (θ, t) =
∞∑
n=0

an(t)
2n + 1

2
Pn(cos(θ)) (7)
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and find that the coefficient functions an(t) obey the infinite hierarchy of ordinary differential
equations

a0 = 1
dan
dt

+ n(n + 1)an = εF (t;ω, α)
n(n + 1)

2n + 1
(an−1 − an+1) n = 1, 2, 3, . . . .

(8)

In the process of deriving (8) we have exploited the fact that the total number of chromophores
N = ∫ π

0 f (θ, t) sin(θ) dθ is a conserved quantity which by means of (7) can be expressed as
N = a0, and that the constant a0 can be put equal to 1 without loss of generality.

The next step consists of truncating system (8), i.e., putting an = 0 for n � N +1 for some
N , which yields a hierarchy of N ordinary differential equations in N unknown functions an.
We conveniently express the truncated system on a compact vector form as

da

dt
+ DN · a = εF (t;ω, α)(e + AN · a + BN · a) (9)

where

a =




a1

a2

·
·
·
·

aN−1

aN




e =




2
3

0
·
·
·
·
0
0




DN =




2 0 · · · · 0
0 6 0 ·
· 0 12 · ·
· · · · ·
· · · · ·
· · · · ·

· (N − 1)N 0
0 · · · · · 0 N(N + 1)




AN =




0 · · · · · 0
6
5 0 · ·
· 12

7 0 · ·
· · · · ·
· · · · · ·
· · · · · ·

· (N−1)N
2N−1 0 0

0 · · · · · N(N+1)
2N+1 0




BN =




0 − 2
3 · · · · 0

0 0 − 6
5 ·

· 0 · · ·
· · · · ·
· · · · ·
· · · · ·

· 0 − (N−1)N
2N−1

0 · · · · · 0 0




.
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The standard theory for ordinary differential equations implies that the initial-value
problem of system (9) is well posed, i.e. the solution exists, is unique and depends continuously
on the initial data. But due to the implicit form of this system, expressions for exact solutions
are not available. However, it is possible to work out an iterative scheme which enables us to
construct approximative solutions to system (9). We proceed in the following way: let a(k)

denote the kth iterated state vector given by

a(k) =




a
(k)
1

a
(k)
2
·
·
·
·

a
(k)
N−1

a
(k)
N




k = 1, 2, 3, . . .

which satisfies the hierarchy of ordinary differential equations

da(k)

dt
+ DN · a(k) = εF (t;ω, α)(e + AN · a(k) + BN · a(k−1)) (10)

with

a(0) = 0.

Notice that the initial-value problem of system (10) is a well posed system where the
iterate a(k−1) plays the role of a source effect on the dynamical evolution of a(k). By carefully
analysing this system one finds that the solutions a

(k)
i of this system decompose uniquely into

an exponentially decaying transient part denoted by a
(k)
i,tr and an oscillatory steady-state part

called a
(k)
i,s as follows:

a
(k)
i = a

(k)
i,tr + a

(k)
i,s i = 1, 2, . . . , N.

Both the transient part a(k)
i,tr and the steady-state part a(k)

i,s can be expressed in terms of power
series in ε with smooth coefficient functions being uniformly bounded in t . Hence, the series

representations for a(k)
i and da(k)

i

dt can be majorized by geometric series in ε. The latter series

converge as k → ∞ provided 0 < |ε| < 1 and hence both limk→∞ a(k) and limk→∞
da(k)

dt exist
in this case. One readily shows that the limit function obeys the truncated Galerkin system (9).

A detailed study of the steady-state part a(k)
i,s reveals that

a
(k)
i,s =

k∑
j=1

F
(2j−2+i)
i (t;ω, α)ε2j−2+i i = 1, 2, 3, . . . , N. (11)

For example, the explicit expressions for the lowest-order steady-state iterates are obtained as

a
(1)
1,s = 1

3
ε

{
1 + 2α

e−iωt

1 − iω
+ c.c.

}

a
(1)
2,s = 2

5
ε2

(
1

6
+

4|α|2
3(1 + ω2)

+

(
α(4 − iω)

(6 − iω)(1 − iω)
e−iωt +

α2

(2 − iω)(3 − iω)
e−i2ωt + c.c.

))
.

From the expansions (11), we find that the iterates obey the convergence property∣∣a(k)
i,s − a

(k−1)
i,s

∣∣ = O(ε2k−2+i ) i = 1, 2, . . . , N (12)

from which it follows that the iterates (11) represent uniformly valid asymptotic approximations
to the steady-state part of the exact solutions of the truncated Galerkin system as ε → 0. Hence,
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the iterates a(1)
1,s and a

(1)
2,s yield correct steady-state solutions to the Galerkin system up to order

ε2. In general, the expansions (11) together with the convergence property (12) tell which terms
to retain in the Fourier–Legendre series approximation of the exact solution to the rotational
diffusion equation in powers of ε in order to achieve the desired accuracy.

One can also solve the truncated Galerkin system (9) for the complementary parameter
regime |ε| � 1 approximately by means of an iteration algorithm which is identical to the
one introduced in this section. The crucial point is to make an appropriate rescaling of the
truncated Galerkin system (9) and the corresponding iteration scheme (10). The details of the
description of this algorithm can be found in Appendix A.

3. The Boltzmann distribution as a global attractor

Let us investigate the situation when the effect of the ac field is negligible in comparison with
the dc field. In this case the rotational diffusion equation exhibits an equilibrium solution,
termed the Boltzmann distribution, given by (4). We will study the stability of this distribution
by means of the Galerkin-system approach. Hence, let α = 0 in the truncated Galerkin
system (9). We obtain the constant-coefficient inhomogeneous system

da

dt
= εe − CN · a (13)

where

CN ≡ D − εA − εB
which can be solved in the standard way. The coefficient matrix CN is a tridiagonal, invertible
matrix of the type

CN =




x0 y1 0 · · · · 0
z1 x1 y2 · ·
0 z2 x2 y3 · ·
· · · · · · ·
· · · · · · ·
· · · · · 0
· · zN−2 xN−2 yN−1

0 · · · · 0 zN−1 xN−1




(14)

where
xn = (n + 1)(n + 2) n = 0, 1, 2, . . . , N − 1

yn = ε
n(n + 1)

2n + 1
n = 1, 2, 3, . . . , N − 1

zn = −ε
(n + 1)(n + 2)

2n + 3
n = 1, 2, 3, . . . , N − 1.

(15)

The equilibrium solution a(N)
eq of (13) corresponding to the Boltzmann distribution through

the truncated Fourier–Legendre expansion (7) is given by

a(N)
eq = εC−1

N · e. (16)

In the case N = 2 we have

C2 =
[

2 2
3ε

− 6
5ε 6

]
a(2)

eq =
[ 5

15+ε2 ε

ε2

15+ε2

]
(17)

from which it follows that

a(2)
eq =

[ 1
3ε − 1

45ε
3 + O(ε5)

1
15ε

2 − 1
225ε

4 + O(ε6)

]
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by Taylor expansion in ε. On increasing N , i.e. the number of scalar equations in the
truncated Galerkin system, the number of scalar components in the equilibrium solution is
increased. Increasing N also means that the equilibrium solution is updated. The latter
process can be described in the following way: we compare the scalar components of the
system a(N)

eq = εC−1
N ·e and a(N−1)

eq = εC−1
N−1 ·e. Then one can show by Taylor expansion about

ε = 0 and the induction principle that∣∣∣∣ a
(N)
1 − a

(N−1)
1

a
(N)
2 − a

(N−1)
2

∣∣∣∣ = O(ε2N−1)

= O(ε2N−2)

...

| a(N)
k − a

(N−1)
k | = O(ε2N−k)

...

| a(N)
N−1 − a

(N−1)
N−1 | = O(εN+1).

Here

a(N)
eq =




a
(N)
1

a
(N)
2
·
·
·
·

a
(N)
N−1

a
(N)
N




a(N−1)
eq =




a
(N−1)
1

a
(N−1)
2
·
·
·
·

a
(N−1)
N−2

a
(N−1)
N−1




and

a(0)
eq = 0

by definition. Next, we investigate the stability of this equilibrium within the framework of
the model. We first decompose the solution of (13) as

a = a(N)
eq + ξ

and find that
dξ

dt
= −CN · ξ .

It can be proved that the matrix CN is positively stable, i.e., that the real part of each eigenvalue
of CN is positive, from which it follows that the equilibrium a(N)

eq is asymptotically stable.
Moreover, the location of the eigenvalues of CN can be studied by means of Geršgorin’s
theorems. The details of this analysis can be found in Appendix B.

For arbitrary N , the eigenvalues of −CN in the purely diffusive case (i.e. ε = 0) are, as
expected, real, negative and distinct. Hence, by analysing the characteristic equation of −CN

in terms of the implicit function theorem, we conclude that all the eigenvalues are real for
small but non-zero values of ε2 which means that a(N)

eq acts as a stable node at least for low
values of the dc-field strengths.

For example, in the case N = 2, we find by direct computation that the eigenvalues λ± of
−C2 is given as

λ± = −4 ± 2
5

√
25 − 5ε2

which shows that Re [λ±] < 0 for all ε. Moreover, one finds that λ± are real for moderate
dc-field strengths, i.e. 0 � ε2 � 5, and complex for the complementary high dc-field strength
regime ε2 > 5. In the former case the equilibrium a(2)

eq acts as a stable node, while in the
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Figure 1. The real and imaginary parts of the eigenvalues of the coefficient matrix −CN as functions
of the dc amplitude ε for N = 2, 4, 6, where CN is the matrix defined by (14). The filled circles
denote the real parts and the open circles the imaginary parts.

latter situation, it is a stable focus. In figure 1 we have displayed the real and imaginary
part of the eigenvalues as a function of the dc-field amplitude ε for N = 2, 4 and 6, thus
supporting the conjecture that the equilibrium a(N)

eq becomes a stable focus when increasing
the intensities above a certain threshold. However, one readily observes that the dependence
of the eigenvalues on the dc-field strength reveals a more complicated structure as the order of
the Galerkin system is increased.

From the asymptotic stability of the equilibrium solution a(N)
eq we can conclude by means

of the corresponding Fourier–Legendre series (7) that the Boltzmann distribution acts as a
global attractor for all initial distributions of the rotational diffusion equation when the ac-field
contribution is negligible as compared with the dc effect. Moreover, this attractor is of the
stable-node type for small and moderate values of the normalized dc-field intensity ε2 while it
becomes of stable focus type when this intensity increases above a certain threshold.
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4. Conclusion

In this paper an iteration scheme for the Galerkin system (8) resulting from the rotational
diffusion equations (5) and (6) has been studied. The convergence properties of this scheme
is addressed, thus showing the possibility of getting an approximation of the desired accuracy
of the steady-state part of the solution to the Galerkin system. It also follows, by appealing to
the convergence of the algorithm that the exact solution of the Galerkin system decomposes
into a transient part and a purely oscillatory part which consists of harmonics and higher-order
harmonics in the fundamental driving frequency. Next, the exact solution of the Galerkin
system is analysed in the situation when the ac effects are negligible. In that case the Galerkin
system reduces to a linear, inhomogeneous constant-coefficient problem, where the equilibrium
corresponds to the Boltzmann distribution. By using the theory of positive stable matrices it
is shown that this distribution acts as a global attractor for all initial distributions, as expected.
Moreover, it is shown that this process is characterized by a purely exponential decay in time for
low and moderate dc-field strengths, while the relaxation behaviour becomes oscillatory when
the dc-field strengths exceeds a certain threshold. Finally, the decay towards this equilibrium
state is analysed in terms of Geršgorin’s theorems for the location of the eigenvalues of the
coefficient matrix of the linear problem.

In future papers we aim to address the question of the applicability of iteration schemes to
other truncated Galerkin systems. With this in mind it should be mentioned that the theoretical
model for photoinduced anisotropy in liquid-crystalline azobenzene side-chain polyesters
consists of rate equations for trans and cis chromophore distributions, which assume the
form of linear integro-differential equations. Thus, when applying the Galerkin procedure (7),
we find an infinite set of linear ordinary differential equations for the time evolution of the
Legendre–Fourier coefficients [12], where closed-form expressions for the exact solutions
cannot be obtained.

We also aim to extend the present model for the chromophore distribution by incorporating
inertial terms and time-delay effects. Such effects are believed to play an important role in
certain experiments, and it is important to clarify both the physical implications and limitations
as well as the mathematical aspects of such modelling approaches.
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Appendix A. The Galerkin scheme for |ε| � 1

The iteration scheme for the Galerkin system also works in the case |ε| � 1. Introduce the
parameter δ defined by

δ = 1

ε
(18)

i.e. the inverse normalized dc field, and the new timescale

τ = t

δ2
. (19)
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Then the system (9) can be transformed to

da

dτ
+ δ2DN · a = δF (τ ;ωδ, α)(e + AN · a + BN · a) (20)

where the scaled frequency ωδ is defined as

ωδ ≡ ωδ2. (21)

The structure of (21) enables us to formulate an iteration algorithm for this system in a way
analogous to (10)

da(k)

dτ
+ δ2DN · a(k) = δF (τ ;ωδ, α)(e + AN · a(k) + BN · a(k−1))

a(0) = 0.
(22)

This system is equivalent to (10) through the transformations (18)–(21). One readily shows
that the steady state part a(k)

i,s of the component functions of the kth iterate a(k) of (22) can be
expanded as a power series of δ which is formally identical to (11)

a
(k)
i,s =

k∑
j=1

F
(2j−2+i)
i (τ ;ωδ, α)δ

(2j−2+i) i = 1, 2, 3, . . . , N

with the coefficient functions being uniformly bounded in τ . Now, since |ε| > 1 by assumption,
|δ| < 1 and hence by exactly the same argument as above we can conclude that the steady-state
limit of a(k) exists as k → ∞ and the limit function of a(k) obeys system (22). By restoration
to the original variables it is concluded that the power-series expansion (11) yields a uniformly
valid asymptotic approximation to the steady-state part of the exact solution.

Finally, let us investigate the non-generic case |ε| = 1. By introducing a change of
timescale

τ = t

|δ|
where δ is a free parameter designed to fulfil the condition |δ| < 1, systems (9) and (10) are
transformed into

da

dτ
+ |δ|DN · a = |δ|F(τ ;ωδ, α)(e + AN · a + BN · a)

da(k)

dτ
+ |δ|DN · a(k) = |δ|F(τ ;ωδ, α)(e + AN · a(k) + BN · a(k−1))

a(0) = 0

with

ωδ ≡ ω|δ|
and by the same type of arguments as in the case |ε| > 1 we conclude that the iterative
scheme (10) is also applicable in the case |ε| = 1 with uniform convergence to the exact
solution of the Galerkin system (9).

Appendix B. Asymptotic stability of the equilibrium in the dc case

We prove the positive stability of CN given as (14) and (15) by appealing to the following
general theorem [10]: let CN be an N × N matrix and EN an N × N matrix which is positive
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definite and diagonal. If FN + F t
N is positive definite, where FN = E−1

N · CN · EN , then CN is
positive stable. In our case, let EN be the positive definite diagonal matrix defined as

EN =




1 0 0 · · · · 0
0 k1 0 0 ·
0 0 k1k2 · · ·
· · · k1k2k3 · · ·
· · · · · · ·
· · · · · 0
· · · · 0
0 · · · · 0 0 k1k2 . . . kN−1




where ki =
√

− zi
yi
, i = 1, 2, 3, . . . , N − 1, where yi and zi are given by (15). Let FN be the

matrix

FN = E−1
N · CN · EN

where CN is given as (14) and (15). Then we find that

FN + F t
N =




2x0 0 0 · · · · 0
0 2x1 0 0 ·
0 0 2x2 · · ·
· · · · · · ·
· · · · · · ·
· · · · · 0
· · · · 0
0 · · · · 0 0 2xN−1




i.e. a diagonal matrix which is positive definite. Hence, it follows that CN is positive stable.
It is also possible to extract information about the location of the eigenvalues by means

of Geršgorin’s theorems [11]. According to the first theorem of Geršgorin [11], it follows that
the eigenvalues must also be located in the subset % of the complex λ-plane given as

% = %1 ∪ %2 ∪ %3 ∪ · · · ∪ %N−1 ∪ %N

where the sets %n(n = 0, 1, 2, . . . , N − 1) are the closed discs

%0 = {λ; |λ + 2| � 2
3 |ε|}

%n =
{
λ; |λ + n(n + 1)| � 2n(n + 1)

2n + 1
|ε|, n = 2, 3, . . . , N − 1

}

%N =
{
λ; |λ + N(N + 1)| � N(N + 1)

2N + 1
|ε|

}
.

Hence we can conclude that the eigenvalues of −CN are located in the subset

& ≡ % ∩ {λ; Re (λ) < 0}
of the complex λ-plane. Notice that the radius of each Geršgorin disc %n(n = 0, 1, 2, . . . , N−
1) is proportional to dc-field amplitude |ε|. For small and moderate values of |ε|, we expect,
according to Geršgorins second theorem [11], that each disc %n contains one and only one
eigenvalue of −CN of the left complex λ-halfplane.
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